

Situation at Midale of March 45

Gen. d. N.A.
Oberst Boetzel

Section 1.	Section ${ }^{\prime} 2$	Section 3.	Section 4	Section 5	Section 6	Section 2
Section 1:- Signals ootmunications (officer Responsible for Signals Routine) (In this Section wàs Amininan Boderimueller).						
Seotion 2:- Evaluation "inest" .".						
I/C Section: Haptianin Thielo (or Thiel)						
Oberinspektor Buchfelder						
Section 3:- Evaluation "East". I/C Section: Haiuptmann Gorzolia (or similar name)						
Section 4:- Cryptanalysis For detailed organisation see beio						
Seotion 5:- Captured material - obtaining books and data - maps .I/C Sectioñ: Amtnarin Blook						
Section 6:- Unknown At the date in question, the Section was. in the neighbcurhood of stuttgart						
Section Z:- . Personnel matters						

Organisation of section 4
(Cryptanalysis)

I/C Section
Major Dr. Hentze


```
Sub-Section b
    Work on all cipher machines
    Head:- Wachtmeister Doering
    Deputy:- Wachtmeister' Buggisch.(till about Nov.44)
                                later --Wachtmeister Valentin
Head of Main Section:- Oberleutnant Kneschke.
    (previnusly Ober-Regierungsrat Bailovic - till oct.44)
    [Bailovio was transferred to F.Q. OKW/Chi]
```

Main Section 2" Cryptanalysis "West"
Sub-Section a - U.S.A.
Great Britain
Sweden
Head:- Regierungsbaurat Dr. Werner Schulz
Deputy:- Wachtmeister Schanz (?)
(Previously U.S.A.) 'one, Sub-Section*
Great Britain one Sub-Section ${ }^{\text {*/5 }}$)
Sub-Scotion b - France.
Spain Fere no longer worked on.
Portugel $\{V$ Volume of traffio was alwaye
Brazil \{ extremely smali and thus
:Switzerlana) unimportant.
- Head:- Oberinspektor Ot to Kuehn***.
(previously Sonderfuehrer (z) Hons-
Woifgang Kuehn - from 1941-Feb. 1945)
Deputy:- Wachtueister Max Horniokel
Sub-Section o Balkgn Countries
Head:- Oberleutnant Kneschke
(previously Sonderfuehrer (2) Geisler
previously 0.Reg.Rat Bailovio)
Deputy:- Wachtmeister Esiterhatzio
(name might be spelit Esterhazy)
* Head:- Regierungsbaurat Steinberg (transferred to H.Q. Chi/OKV)
Deputy:- Unteroffizier Lucius

* Head:- Oberinspektor Zillmann (later in another Section of Gen.d.N.A.)
Deputy:- Dr. Sohulz
\% Oberinspektor Otto Kuehn was previously in charge of the kain Seotion
"Iraining". sAssociated with this were the examination, selection, and
training of cryptanalysts. From the midale of March 1945, the training
seotion wes incorporated in the French Section. Before and at the
beginning of the war, Oberinspektor Otto Kuehn was in charge of the
Frenoh Section.
(before him Oberleutnant Schubert before him Sonderfuehrer (K) Bleschke)
a) N.K.V.D. traffics (?) Leutnant Dettmann
b)
o) $\because \quad$ Inspektor Tomunsky
Wachtmeister Fuchs.

Main Section 4
Hollerith Section and workshops
Head:- Regieruingsbauret Schenke
The main depot was at Erfurt There was a sub-depot at Weimar

I do not know whether there was still a possibility of a change of location and whether such a move was actually carried out at the beginning of April 1945.
I/C Workshop:- : Inspektor Sohuessler (Erfurt)

Main Section (2)

Personnel Matters
Head:- Inspektor Strahlendorff

Under the conmand of Gen.d.N.A. vere "the Sigint Comanders"
In servioe in the East: (as far as I know) were:- Comander 1
Comancier 2
Commander 3
In' service in the West were:-
Commander 6 in the northern part of thie western front
Unit Commander:- Major Lechner
I/C Cryptanalysis:- Leutnant von Demfer

[^0]- I do not know whether this new organisation oame, into full use. This reorganisation was not supposed to make any difference to the direct contact between the head of Section 4 (Cryptanalysis) and the officers i/c Cxyptanelysis of the Comanders.

Commander 5 in the southerm part of the westem, front
Unit Commander: - Major Marquard
I/C Cryptara?

Commander 7 - Itailan front

Unit Comander:- Oberstleutnant Semueller
I/O:Oryptanalysis:- Hauptmann Mueller

From January 1941 on ; the actual date of establishment of the Cryptanelysis Section, the Section was unier $0 \mathrm{KH} / \mathrm{In} 7$. . It was not put under the command of Gen. d:N.A. till february 1945.

Heads of the Section were:-
Major Mang
Major Mettig
Major Lechner
Major Dr. Hentze

As far as I know, there was in the army before the war only a cryptanalytic section for France, Russia and Poland. All other departments were only oreated during the war. Aray cipher systans are said to have been hanaled by OKW/Chi.

FRENCH C.PPHER SYSTEUS (ARMY)

1

Frenoh Machines

1. French. "C 35" Machine. This machine was worked on and frequently broken in Wm. Doering!'s machine section. As far as I know and oan judge, the content was moderate to good, but mostly too ola.
2. Frenoh "B 2.11" Machine." This machine was worked on in wh. , Doering's nachine section without the slightest success. This machine was pronounced unbreatable by Doering and his oolleagues.
3. French rBG $38^{\prime \prime}$ Machive. This machine was worked on in Wr. Dooring's machine section. Ancording to roparts, 'onzy messages with the same or nearly the sanm inticator group were breakable. Under favourable cirounstances the appropriate day's traffic could be: broken from this. Sush compronises were very rare. They were of no particular importance as the messages broken were too, old.

French Cipher Systems Previously Used

4. 5/L Systems. Simple trancposition

10-daily key-chenge
appeared about June, July, August, 1943 in Tunisia.
Content insignificant
5. 3/工 System. Code table.

Fortnightly key-change
Appeared from about 1942 to middle of 1944 in Syria - not intercepted aftor this.
Content - as far as I know and am oapable of judging - moderate to good.
6. 3/L System. Code table

Fortnightly key-change
Appearod roughly 1943 to midale of 1944' - not intercepted after that - Syria.
Same system as that mentioned in para. 5:
Content - technical detalls of wireless traffic. :Sónetimes it passed the weekly changing onll-signs.
7. In Syria there were also used a nuriber of quite simple systems of zare occurrence
a) a frequently changing $2 /$ Fi sübstitution table (with alternative equivalents)
b) a simple transposition

Content - police matters
8. 4/F System. 4/F ooce table

Daily key-change, 'but the same each wonth (?)
Appeared 1944 in the Syrian ooastal network
Content - ship movements in coastal area.

Current Freams Systens

9. 5/L Messages. Diagonal transpositions.

Formerly a monthly - jebely a fortnightly key-change 1943(?) - 1944-1945
Mest Africa
As far as combent was comemad, only the strength returns were inuratent.

Selter subtritation talje
1924.-1945

France (?) and moxtin Africa

Equatorina asrica
Content ․ Mintle tingortance
12. 5/F Messages. 4/F code - hatted
A.T. 3 C. 43 :

1943-194-2-132. 5
Nouth Aftion - musióo
Comitent - gooid ast that time it consernsd troop novements to North Aficioa (Eunivg from Thest Africa)]
13. 4/F Messeges. $4 / \mathrm{F}$ code with' subtractor:

1944-1945
for a short time - Italian front
later - Mnther country
14. 3/F Messages. 4/F code with subtraotor

1944-(1945 very slight, unimportent and irregular traffic) transport network - North Africa.
A System Still uised but Unbroken whon I left OKHI
15. 2 5/ Messages
$1943(?)=1944-1945$
France - North Africa - West africa - Equatorial Africa

Description of Frenoh Cipher Systems with Details of
Experience aoquired in Breaking them.
The French machine. systems (cf. page 6 under Nos. 1 to 3) were without exception handled in the niachine section under Wachtmeister Doéring. I am therefore unable to give more exact details of working methods. Doering's colleagues were very carefully selected broins, men who were engineers or mathenaticians in civil life.

The systei mentioned on page 6, under No. 4, came up suadeniy - had only a short period of validity - was of little content value - was little used. We oan easily dispense with a description of the breaking, process. You get the clear text by sliaing :((sections of)) the cipher text against one another, later: called just "sliding" for short.

The gasem mentioned on page 6, under No. 5; is a small 3/L code table, composed of strereil parts.

The construction of the code-table could be represented as show in the diagran.

The individual sode equivalent is read of f in the following order:coliwn, section, row.

The strips (columins and zoris) do not contain the virole alphabet.

Whe coje table is arranged alphabetically. The numbers are in tureir natural onder in the code. The recovery of the code presented no great difficulty - as storeotyped beginnings cane up very of ten, these being addressos with name of station and location. In these, place nomes were usually spelt out, which made the recovery of the code still easicr.

Example of a stereotyped message beginning:-

or \quad TELE $A-I E-P-A-T E T E-D A-N A-S$
and similar beginnings.
Later, oode reoovery would have come up against considerably greater difficulties as the French introduced frequently changing 3/L cover groups for the names of stations and the most important place-names.

The key-changes oarried out might be piotured as pasting new strips over the old ones,

The system described on page 6, under No. 6, is a traffic-routino code identioal in its entire construction to the system mentioned under No. 5. The vocabulary is more adapted to wireless traffic.

For simplicity's sake I can dispense with any further notes on the system desoribed on page 6, under No. 7.

The cipher system quoted on page 6, i under No. 8 , was not broken in OKH but by" Oblt. Kneschke, at that time with Sigint-Comander 4 in Beigrade. I cannot therefore.give exact details without speciel data.

Each compartment of Strips A and B con-tains-a two-digit number. So for each code item there is produced. a 4 -digit number. The $4 / 5$ code equivalent was. further reciphered by means of figure substitution tables.

If my memory continues to serve me correotly, the figure-substitution tables ohanged daily, although in a monthly oycle.

The system mentioned on page 7, under No. 2, is a diagonal transposition such as must have appeared in the first world war, according to a oaptured description, and appeared at the beginning of the second world.war in the campaign in the west.

In the two oases Just mentioned this diagonal transposition had the following oharacteristics. In front of the cipher groups the following figure groups (for example) ocourred:
[1] 00027
[2] 23322
[3] 34043
[4] 12525
[1] is the message number
[2] is the indicator group
" A - B - item giving the key word
0 being a repéat of B
$D \& E$ appear only as 00 or 22 or 44
Here " 00 " indicates no shortening of the keyword. "22" means shorten the keyword by one letter at the beginning and one at the end.
"44", shorten the keyword by 2 letters at the beginning. and 2 at the end.
[3] the starting point for diagonals
[4] number of elèments

Exampla of Enciphement

Let tho keyword be:- Paul Ambroiac Valcry - 10-23-37-45-73-
The numerionl key is:- 121168210413117155173961418
Then the clear text is put in

$\underline{-}$	4	11	8	18	12	2	14	5	3	17	7	15	9	13	1	16	6	10	
\cdots	5	A	U	L	A	M	B	R	0	1	5	E	V	A	L	E	R	Y	I
	12	1	16	8	2	10	4	13	11	7	15	5	17	3	9	6	14	18	
	1	\cdots	E	1	1 H	E	E]	R	U	E	H	E	R	E	M	S	P	?
	0	R	T	H	A	L	L	E	1	N	K	A	R	L	5	R	U	H	I
	E	5	I	N	D	U	E	B	E	R	H	U	N	D	E	品	T	V	7
	E	R	H	A	F	T	E	T	Y	U	H	T	E	EI	G	E	B	R	?
	A	C	H	T	S	2	0	. 3											

$$
\begin{aligned}
& \text { Instructions for reading of ditenols } \\
& \rightarrow \text { Instructions for reading of verticals } \\
& 5 \text { digonals are used. }
\end{aligned}
$$

Let the stanting point for the first diagonal be "3". Here the even number diagonis go to the right and the odid nubor diagomals to the left. The remaining letters are reat off vertically beginning immodiately to the right of the starting point of the diagonals (see the example).

Staxting point of the first dingonals
Starting point after the diagonals have been read off
The olpher text for the above exmple with the xppropriate indiator groups would run as follows:-

00027	23300	34043	80080	Ruture	
EEUTK	REENU	VUIDE	TESEP	ELUET	IOEEA
FTSTB	T13	WHINE	PHENS	SROMA	DESTD
RUROA	TRPEM	THNAT			

Decipherment follow the grme course, but in reverse.
To conplicate further the diasonal transponition apparing in Wast Africa, the fronch introduoed lettor substitution tables with a monthly change for the numerical indicator groups. The indiontor groups thus transformed were distributed, when they changed each month, the cipher text.

Suppose the letter substitution table to be:-

0	A,	M,	W
1	F,	P,	Y
2	D,	A,	Z
3	I,	0,	V
4	K,	U	
5	B,	Q,	S
6	H,	X	
7	E,	G	
8	J,	N	
9	C,	I,	I

After reciphement by the letter substitution table the indicator groups used in the above example would run:-

AMVZG RTOWA VUAIL JATMA

If now several messages are compared with one another, the indioator groups stand out if there is snough material for comparison. This vas, of cotrse, only possible by the use of statistioal methods. For this purpose the first ten and the last five groups were stuated statistically.

Then all first, second eto. groups of the whole material vere compared, so that the indicator groups could be reoognised. owing to the charaoter. istic construation of the indicator groups the appropriate substitution table can easily be broken.

An example of a deciphering process will be carried out with the diagonal transposition used for Equatorial Africa. The experionoth gathered In the decipherment of diagonal transposition will likewise be noted there (of. pp, 12 and 13).

The sygtem mentioned on page 7, under No. 10 , is a $4 / \mathrm{F}$ code, reaiphered by letter substitution tables,

The single figures of the $4 / 5$ code are transfomed with the aid of the letter substitution table into a $4 /$ L ciphex text. The first group in this type of message is always "TYSF". Then follows the cipher text o the last group is an indicator group, The firat and last places in this group indioate the intter substitution table to be used.

By laning up messages with the same substitution tables, idention codu groups or even longish repeats can be noted. Such longish repeats will usually show small gaps - thus letters oan be equated with one anothom.

In this way the breaking of the letter substitution table is possible.
Here, too, frequently recurring stereotyped mescrege beginnings in the intial stages made code reoovery oonsiderably asier.

Such stereotyped message beginnings were:-

This "TTSF" code was alphabotically construoted. The first code equivalents were very quickly obtained from such stereotyped message begimings. The mubers, which were in numerioal order, provided further possibilities for building up the code. Lining-up of different indioator groups looked very promising from the fact that when the systom was introduced nearly every message ended with the itton "STOP". "FTw" or lass of ton "EOINT".

Next of all a fer other items such as DE, A and some nomes of monins were successfully identified. As far as I can judge, the content value of these massages was small.

Later such stereotyped message beginings and endings were no longex to be seen

The diagonal transposition rentioned on page 7, under No. 11, contained ohlufly official joumey retums, in edation medical reports were sent in ont this system.

The external oharacteristics of the systef were:- The first two groups tre $5 / \mathrm{F}$ groups - then follow $5 / \mathrm{L}$ groups, the oipher text - the last group is again a $5 / \mathrm{F}$ group - it is in $\overline{\text { ract }}$ identical with the seond $5 /$ group in its first three digits.

The first 5/F group is the message number
The scoond 5/P group is the incicator group
The last $5 / \mathrm{F}$ group is a cheok group.

Exatiple

The system was broken, but without it being possible to diacovor the signifioanoo of the indicator gaoup. It could only be established that when the indicator group (i.e, the socond 5/F group) was the same, the sane keyword vas also used.

In this systex there appoared fron 2 to 7 dingonis which were tixed by the indicator group. The diagonals ware also rend of to right and left. As far as I renenber, about 600 different indicator groups appeared, of which approxinately 150 were broken by ny colleazues.

Woxk on the system juat desoribed went on for a very long time without results. Several times the work was interrupted or talen over by othor cryptanalysts, Finally a lucky chance produced the solution. A message came in oontaining double letters in its cipher text.

Example of the broaking process:-
Only the cipher text follows - the indicator exoups are not taken into consideration.

IAONR	Rnomar	QUSGR	Natrx	Stwric	IOTIX
ETURU	IDXEV	Ogro	EuTMP	FRXIE	Emb
EUSSM	SESNA	RG			

olpher text. The nore favourable casc is shown in the example.

	T	T	E		L	S	G		R	4	2	iin	
	U	N	U		N		R	R			5	Q	
	S	T	0		P		N	$\sqrt{1}$		a	E	U	
	s	T	0		P		A	A			3	S	

After many fttempts the diagonal transposition box was successfully recovered

5	9	1	3	14	2	7	11	13	15	6	10	12	8	4
5	U	I	T	B	N	0	T	R	E	T	E	L	E	6
R	A	2	1	E	N	R	0	X	U	N	U	N	T	R
0	I	5	0	U	\%	T	E	E	5	T	0	1	U	N
X	D	E	\square	X	$\underline{1}$	J	E	H	S	+	0	P	R	\wedge
S	X	S	S	${ }^{6}$	G	I	N	G	0	I	D			

Let ate add that in this example it can no longer, of course, be a case of the orisinal text. In the oricinal text the words ".otre telegrane", "stop" oocurred twice and the expression "SScemyord" occurred also; and these were agnin used. In this case only two diafonals oocurred.

Two or three further wescages with this indicator group wexe available, which oould thus be broken. Here, too, the ending in "SSGGINGOLD" was repeated. "Sg" means "signe" - S-G is reperted up to throe tines. Ingold is a name.

In the further solutions of indioator groups successful use was again made of the more or less frequent stereotyped begimings and ondines. Here vexy profitable use was mate of nessages of equal Iength and with the same indicator group.

The breaking of every : ingie indicator group made great deanas on the endurance and zeal of the individual, for here only the wost laborious study of details of fers a prospect of sucouss.

Here let we sum up my experienoe in workjeg on diagonal transposition. The first breaking of n diagonal transposition can bo considered a ergat piece of luok. If, hovever, something more is got out of this solution such as, fox exauple, stereotyped begimings or endings, then that is really a big step forvard.

Thanks to the stertotyped passages we were able to carxy out further work on the materinl from Equatorial Africa with a certain arount of succoss.

Tho knowledge gnined of the content of matorial from Mest Afrioa which also inolined towards storeotypad beginnings, bupplenented and simplified the analytioal work here too to a not inconsiderable degree.

Nevertheless breaking takes a very long tine. Whether working on aiagonal trmapositions fron front-lino traffios with, for oxample, a daily change of kuyworl, could still be called worth-whila, seens to me very doubtful.

The systeu nentioned on page 7, under No. 12, appeared for the first time about the midale of 1943 in North Africa. By the wonths March-April 1944_{4} the syster: had been so far broken that the first nessages could be read.

A numerionl count of this material was put in hand. It turned out that the nuwer "6" took up 14-15\%, Frow this it could be conoluded that it nust be a case of a hatted code.

The extemal chrocteristios of this systol are as follows:-

In every message it in seen that the reversed 4 th group subtrocted from the 3 rd group inway produoes the sane difference.

In the present case therefore:

	indicator group:	084,83
. check group reversed:	41595	
$\cdots \quad$ aifference:	67998	

In the course of tine we got a nuber of cribs which inde furthor work possible and assisted it, although they did not supply any particular aids for obtaining a solution.

Finally we got 5 neasages whth the same indicator group; all the messages were of different lengths, they all had the sane contents with a further addition. The last group of eaoh nessage was alwaye inentical.

The following pioture resulted after the 5 nessuges had boon armanged
sliding". by "sliding".

On the basis of repetitions it was establishea that the foundation was a 4/F code. The red strokes (2) show the delinitations of the individual code groups

- length of hessayge 1
- lencth of nessage 2
- length of 1.0ssago 3
- length of message 4 length of :essage 5

By "sliding" it mas then estoblishea that the Inst group of each

But this problen shall be explained nore fully by nows of a fieure exaraple

The cipher texts of the 5 messeqes run:-

Message 1:

Ressage 2:

00091	17017	08483	59514			
$1)$	$3)$	$4)$	$5)$			
15325	11501	07734	37610	78163	03682	
12826	36581,	02589	15550	72765	36461	
100	$11)$					

-

00092	18018	08483	59514		
15325	18501	077,24	37610	71616	30323
182128	26636	58162	58915	65072	76523
6412	71217	64976	$\frac{72763}{}$		

Mossage 3:

00093	20020	08483	59514		
15325	18950	10772	6.4376	10710	.81630
327,82	12826	36365	81662	58915	61507
27658	03646	19701	21764	91767	27635
00094	21021	08483	59514		
15325	18935	01077	214.37	6107,	68163
03275	. 82128	26565	65816	62258	91567
. 50727	65813	64619	701,12	17649	10767
27688					
00095	26026	08483	59514		
15325	18973	05010	77212	91437	61071
67381	63032	78278	21282.	65206	36581
66546	. 25891	56708	55072	76581	65364
61970	31812	17649	11417	67276	38103

Repeats of message 1 in the other messages nre bracketod and underizned.

- 16 -

TICOM/I-160
\because

Then to begin with the colums revealed by the ropeais of the ciphex , text were written out and arranged in order of longith to give the following pioture:

\therefore| 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 5 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 4 | 8 | 6 | 2 | 5 | 3 | 1 | 8 | 7 |
| 5 | 0 | 3 | 1 | 3 | 5 | 0 | 6 | 2 | 2 | 6 |
| 3 | 1 | 7 | 6 | 6 | 8 | 7 | 4 | 1 | 1 | 7 |
| 2 | 0 | 6 | 3 | 5 | 9 | 2 | 6 | 7 | 2 | 2 |
| 5 | 7 | 1 | 0 | 8 | 1 | 7 | 1 | 6 | 8 | 7 |
| 1 | 7 | 0 | 3 | 1 | 5 | 6 | 9 | 4 | 2 | 6 |
| -1 | 3 | 7 | 6 | 0 | 2 | 5 | 3 | 5 | | |

$\frac{\text { Message } 1}{\text { So far it has thus been }}$ possible to detemine that colums 5 arid. 11 must be the last two colurns of the cage, though they night certainly be switched round \rightarrow indicated by $=\cdots$,

Message 2
Column 3, 4 and 8 must be the first three colurins - : but ray come in a different order relative to one another.

Message 3
Column 4 can be considered fixed. On comparing nessages 2 and 3 one is struck by the figures underlined.

\therefore| 3 | 8 | 4 | 1 | 6 | 9 | 10 | 2 | 7 | 5 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 5 | 2 | 8 | 6 | 7 | 9 | 2 | 6 | 6 | 3 |
| 1 | 8 | 7 | 9 | 6 | 0 | 1 | 1 | 7 | 5 | 8 |
| 6 | 1 | 5 | 3 | 2 | 1 | 0 | | | | |

Message 4
Further colums could thus be bracketed. 'Note underlining:

Message 5
It was also possible to
fix columis. 5 and 11. The repetition of "153" is striking.

If meseages 1-5 are transoribed with the key narrowed down as far as posisible; the following picture is produoed:-

If the group "6153"'is' assumed to be fixed, then oolunns 2 and 7 would have to be adjacent (message 3-confirmation in riessage 5). . Further colums 3 and 8 , would have to be adjacent in'message 4 - confimation' nessage 2. . If ucosuge ' is lurcmer comparea with message b, we get the following numerical key:-1 3. 8. 4. 1. 10. 9.6. 2. 7. 11. 5.

The afpropriate keywori was recovered frori the numerical key. 'I oan no longer ronember what it was.

An attomptwas made to explain the significanoe of the indicator group and the oheok group:-

The French take the keyword from the code. The 5th digit might therefore give the starting point for the transposition.

Example:-

' Suppose the code' equivalerit of a keyword used 1e 2834. " Let the" starting point be 1 .

Then the unireoiphered indicator group would read 28341.
The indioator group is reciphered by the addition of a constant fivedigit number.

The check group is derived fror the adation of a second fivemagit nuiber. to 28341.

Example:-

Here too, chance cane to our ald. The two five-digit nubers were announced in a systen we could read (c 36). Thus we had the indicator groups "in clear".

A statistical analysis of the coie groups, that had appeared up till then proved beyond all doubt that the code equivalent was not ontered in the cage" in the form "ABCD" but in the form "CDAB". (this was not carried out in the case of' the example given).

The pages in the sixties were especially numerous, so the natural assumption was that the numerals and amplifying groups are to be found on these pages. This assumption was further strengthened by the fact that tho statistical analysis of the decoded indicator grouns showed these pages to be unused.

There were available in the way of captured documents a series of codes of similar construction:' Specially notable in'this oonnoction was the "ATM" code, which mist have been already in use in North Africa before the war. It, was perfectly obyious that it could not be the same code. . But It wos possible to use the vocabulary. of this code to an extraordinarily great extent. Thus the new code - it was named. "Am 43", as was discovered later from decoded messages, - could.be recovicred with quite remarkable speed and worked on with good results.

Later the indicator group teohnique for this system was changed. The position of the indicator and the oheak group varied with the Iength of the nessage.

The position of the indicator and check groups was related to the group giving the number of groups."
Examples:-
Number of groups
Position of indicator and chock Broup
$\frac{10010}{11011}$
12012
13013
20020
21021

	positions	and 2
	2	" 3.
!	\therefore " 3	". 4
	4	" 5
,	" \because F 2	". 3
"	3	11. 4

The first and second digits of the number of eroups are added, giving the position of the indicator group -'the following group is, ojways. the cheok 'group
r) The sane atiference in all messages comes from subtraction of the constants

The recipherment was as follows:-

28341	28341
$\frac{10091}{38332}$	$\frac{24520}{12861}$

> indicator group
> date 10.09 .1945
> $+\frac{20}{30}$ (September -30 days)

Solution of this reciphement took an extremely long time; success. finally came by "sliding" a short message. "Sliding", also called "dragging" was looked. on as a last resort and was carried out by a large staff; it finally brought success.

The systern mentioned on page 7 , under No. 13, is a 4/F code reciphered with a short subtractor, which was used on the Italian front in the early days and was captured there. Later the same code turned up in France too.

Example:-

Change of subtractor took place weekly (?).
Within a key period, 10 different subtractors are therefore possible.
By the use of short subtractors, so many depths arose that the breaking: of the subtractors presented no difficulties. In this system, too, we were helped (1) by current knowledge of the message text; (2) by a series of stereotype messages. . This system provided nothing important by way of content.

The system mentioned on page 7 , under No. 14 , is. a 4/F code reoiphered by means of short subtraotors, which was used in transport networks in North Africa. To begin with the volume of traffic was very, large - and finally in the latter days foll away to only a foo messages a month.

The external characteristics of the system were the sane as those already described. in the previous systern.

It was important for the breaking of the system that these transport reports had up till then been given in plain language. The form of these reports was kept very stereotyped.

Concerning our experiences in breaking $4 /$ codes with subtractor reciphement it can be said that for the most part it presents no special problems to cryptanalysis. At our station when dealing with codes with subtractor decipherment we always worked with catalogues of: differences which were drawn up in the form of punched cards, with the $40-50$ most. frequent code. groups as a basis.

Up till the middle of March 1945° we had not succeeded in breaking the system mentioned on page 7, under No. 15. Solution of this material seemed to me also very unlikely.

Iotime sum up in the following section tho results' and experiences gained so far from working on this material:

At the same time and in the same networks as the "ATM 43" had appeared, there were'a few messages which did not show the characteristic , difference of the "ATM 43" but a different one. In the course of time the volume of traffic increased considerably. Two or three cribs turned up; of which only one could be worked on sufficiently to allow the keyword to be recovered.' It could then be deduced from this that it was a hatted $5 / \mathrm{F}$ code.

It was interesting to note here that an extraordinarily small number of cribs turned up; the first crib turned up after 1600 messages; quite contrary to the previous situation.

The work was stopped.'. Some time before the appearance of this system '5/F material had turned: up in traffic between Corsica and North Africa; it consisted of only about 80 messages.... No further materiel came in later." This material was subjected to a brief examination. These 80 messages could be worked on. It was a case of a $5 / F$ code which had been transposed. It was a very primitive kind of transposition.

Example of a key of this type:-

$$
10,1,1,12,13,14,15,16,17,1,2,3,4,5,6,7,8,-9
$$

As far as I remember, the keys changed daily'.
Thus these 80 ' messages' 'could be worked on sufficiently to reveal the ' basic code giro

Interestingly enough' it then turned out that the sane ode must be the - basis of both systems. At this point the examination of the material with its 80 messages could be considered completed.

The material on which work had previously been suspended was taken in hand again. No new cribs had turned up. Thanks to the newly found code groups of the abovemientioned 80 messages, further study would have been highly promising. So a new approach wa's sought and found. 'Let me now describe it - I have not heard whether it did finally lead. to success.

It was seen time and time again that the cage widths used in the reoiphement must stand in some relationship to the message lengths, as it was reasonable to suppose that' certain maximin and minimum depths mast be prescribed for the message cages. Likewise it may be assumed that cipher' regulations strictly forbid so called "full cages". Thus we cen leave out of "account "sliding" of complete cages. Therefore; as one has no cribs at one's disposal, one would have to try "sliding" messages which have an overlength or underlength of 1 or 2. Such oases then would look like this:-

overlength of 1
 powers of ondurnce. Here, too, a faxthor difficulty turt be burne in mind, nowly that the fixing of the coest wiath oan only be done by onlouIntions or guestmork.

Qugs widtha were olculatud as follows:
Al messaces with the sume indiontor quar waxo uxomixtat tostablish with whet oxge widthe full occs whid be pruduced - those onge widthe could then bo disonaled. As tho indiontor groups oocumring host fre* quently wore tazen as a striting polnt, it could be zosumed with relatively Exat certainty that the oage wiath so obtrine was correct.

These exporinente wure onmied out on as brond o basis as possible. The messeres wert host onrenuly selectsd.
 suovess ox friluro of these expeximute, so that I conmot josm judement or this new rathod.

Group 1 - messinge muber
 atyits 4, 5 Eclong to the indionton roup
Group 3)
and lact (or 4th) grout) - Indionton sroun
(I connut now sny rhtuther the lastmantionain worx stock in 4th ow ant plece).

The indiontor rume prouxct the followin: picture:-

$$
\left.\begin{array}{cc}
169807= & 11 \\
138933- & 9
\end{array}\right\}
$$

(Whethex the oriex mas 11, then 9, or the othor wery rouri I cmat now say).
Anong this matiol, wo or throe cribs had turnci up, work on blioh had brought no oorresponding robul s * It was assumed thet thia now rect.. pherunt is not only basua on tramsposition but wast alwo havo been done on a stonotl in come why. Work ox this sti w probleme hou rot been strated In rytine.
 oode tulle, not conpletuly filleatin, which was uscd in front-ling undts. Coce thbles of this kini werg omptured. Judgint frow our sxperismoo up to now, voxious even symilish units must hove dippront oode tablos. Change of tables secmid to b o onrited out at fongt onae gyery two daya.

It was oncu possible to brenk the day taprisio of 3 mit on 20 m 30 messnges.

Sone ceneral remarks on be anic about the Frenoh aystems which I shall set dovn here at the end of wy report to sum up my experiences.

After the ongonien in tho rest a number of Prench cocias wex enptured and workod through. If we oompre all these systens with those whioh appoared ond rere broken lator, we find that the frenohnan is extmoritnamily conservative regercing the oonstruetion of his ciphor systens or reciphering methods. Systens which mut have been used in the first world whr (to judge from doouments found) were usea during the comparn in tho mest and in a slightly modifitei fom up to 1945 in wost Africa.

As methods for rociphering basic books there appear principolly:-
i. subtraction with finite subtractors
2. tyansposition, with keywervs taken from the ecce.

The Fremoh are fork of wing stcreotyper inosange beginnings matendings brenking wes ofton made considerably casiex by this. In desoribing the individual syotoms, these features were, of coures, pointea out.

A further fundamental exporience of mine is that the Prenchman has the idiosyneracy whioh he loos not soen able to eet away from, of comumioating cipher mattors on key changes by rrdio. Thus, through the aiagonal syetem In fost firion we were able on sevexal oocasions to break the key for the 036 machine. and once a key chenge for the iTM 43 crae was anmounced, even though without giving cetails, in this way.

It han preved worthmilu to use Hollerith methode for lareemeele statisticol work - $0 . E$ for sotuing up cataloguen of difforenous, polyeram statistios and the searoh for repoats. Statistion work on a smaller scalo is nowe quickly done by ham.
(Bismed) HANS W. KUBEN
Sonderfuebrex (z)
(Trans. H.D.)

[^0]: * . Very recently-(exact date unknown) the following were set up:-

 Senior Cotmander Sig int East
 0.c.:- Unhorm
 and Senior Commander sigint West:
 O.C.:- Oberst Kopp or Knop (or similar name)

